Глубокое обучение Введение Яцек Табор, Лукаш Струски, Мацей Волчик
- Артикул:
- 15869225584
- Страна: Польша
- Доставка: от 990 ₽
- Срок доставки: 12-20 дней
- В наличии: 2
- Оценка: 4.71
- Отзывов: 7
Характеристики
- Identyfikator produktu
- 15869225584
- Stan
- Nowy
- Język publikacji
- polski
- Tytuł
- Głębokie uczenie Wprowadzenie
- Autor
- Jacek Tabor
- Nośnik
- książka papierowa
- Okładka
- miękka
- Rok wydania
- 2022
- Waga produktu z opakowaniem jednostkowym
- 0.3 kg
- Wydawnictwo
- Helion
- Liczba stron
- 184
- Numer wydania
- 2
- Szerokość produktu
- 16 cm
- Wysokość produktu
- 23.5 cm
Описание
Głębokie uczenie. Wprowadzenie
Jacek Tabor, Marek Śmieja, Łukasz Struski, Przemysław Spurek, Maciej Wołczyk
Opanuj podstawy uczenia maszynowego
Od mniej więcej piętnastu lat jesteśmy świadkami rewolucji w nauczaniu maszynowym na niesamowitą skalę. Rewolucji tej sprzyja intensywny rozwój głębokich sieci neuronowych oraz niezbędnego do tego sprzętu obliczeniowego, takiego jak karty graficzne. "Deep learning", "machine learning" - te słowa klucze rozpalają wyobraźnię programistów, innowatorów i przedstawicieli przemysłu na całym świecie. Także studentów kierunków politechnicznych. Na świecie wydaje się sporo literatury poświęconej tym zagadnieniom, w Polsce niestety mamy pod tym względem deficyt.
Niniejszy podręcznik, pomyślany jako wprowadzenie do tematu uczenia głębokiego, ma z założenia uzupełnić tę lukę. W związku z tym opracowany został w sposób umożliwiający zrozumienie zawartych w nim treści także osobom, które nie zetknęły się dotąd nawet z klasycznymi metodami nauczania maszynowego. Stąd sporo miejsca autorzy poświęcają podstawowym konceptom klastrowania, klasyfikacji oraz regresji. Druga połowa książki przybliża głębokie odpowiedniki modeli klasycznych - z naciskiem na objaśnienie podstawowych pojęć i ich intuicji. Ponieważ dla pełnego zrozumienia modeli niezbędne jest ich zaimplementowanie, integralną część książki stanowi kod, dostępny dla czytelnika na platformie GITHUB.
Spis treści:
Rozdział 1. Wstęp
Rozdział 2. Wprowadzenie do uczenia maszynowego
- 2.1. Analiza modelu i funkcja kosztu
- 2.2. Minimalizacja funkcji kosztu
Rozdział 3. Uczenie nienadzorowane
- 3.1. Klastrowanie: kmeans
- 3.2. Redukcja wymiarowości: PCA
- 3.3. Estymacja gęstości
Rozdział 4. Uczenie nadzorowane: regresja
- 4.1. Regresja liniowa
- 4.2. Zanurzenie
- 4.3. Ewaluacja modelu nadzorowanego
Rozdział 5. Uczenie nadzorowane: klasyfikacja
- 5.1. Wprowadzenie do klasyfikacji
- 5.2. Klasyfiacja binarna: SVM
- 5.3. Klasyfikacja wieloklasowa: regresja logistyczna
- 5.4. Ocena modelu klasyfikacji
- 5.5. Klasyfikacja niezbalansowania
- 5.6. Konstrukcja funkcji kosztu w problemach regresyjnych
Rozdział 6. Metody kernelowe
- 6.1. Wprowadzenie do metod kernelowych
- 6.2. Praktyczne użycie skernelizowanych metod
- 6.3. Porównywanie próbek i rozkładów: MMD
Rozdział 7. Wprowadzenie do sieci neuronowych
- 7.1. Budowa sieci neuronowych
- 7.2. Klasyfiacja nieliniowa: spojrzenie geometryczne
- 7.3. Uczenie sieci neuronowej na przykładzie regresji
- 7.4. Teoria a praktyka w sieciach neuronowych
Rozdział 8. Trenowanie sieci neuronowych
- 8.1. Problem klasyfikacyjny
- 8.2. Optymalizacja za pomocą metody spadku gradientu
- 8.3. Optymalizator Adam
- 8.4. Regularyzacja i augmentacje
- 8.5. Moja sieć neuronowa nie działa: poradnik
Rozdział 9. Wprowadzenie do sieci konwolucyjnych
- 9.1. Przetwarzanie obrazów za pomocą sieci fullyconnected
- 9.2. Filtry konwolucyjne
- 9.3. Sieci konwolucyjne
Rozdział 10. Sieci konwolucyjne w praktyce
- 10.1. Początki sieci konwolucyjnych
- 10.2. Techniki regularyzacyjne
- 10.3. Połączenia rezydualne: ResNet
- 10.4. Wybrane architektury CNN
- 10.5. Finetuning: dostrajanie modelu do nowych zadań
- 10.6. Segmentacja obrazów: UNet
Rozdział 11. Głębokie modele nienadzorowane
- 11.1. Nienadzorowana reprezentacja danych
- 11.2. Modele generatywne: GANy
- 11.3. Estymacja gęstości: invertible normalizing flows
Rozdział 12. Rekurencyjne sieci neuronowe
- 12.1. Wprowadzenie do danych sekwencyjnych
- 12.2. Rekurencja jako model autoregresywny
- 12.3. Sieci rekurencyjne (RNN)
- 12.4. Model Seq2Seq
- 12.5. Zaawansowane modele sieci rekurencyjnych
Rozdział 13. Atencja
- 13.1. Wstęp
- 13.2. Mechanizm atencji
- 13.3. Atencja w modelu Seq2Seq
- 13.4. Selfattention
- 13.5. Selfattention GAN
- 13.6. Transformer jako rozwinięcie selfatencji
Bibliografia
Стоимость доставки приблизительная. Точная стоимость доставки указывается после обработки заказа менеджером.