Импульсные источники питания, второе издание (2014 г.)

12556522369
23 720.00 ₽
23 720.00 ₽
1 шт.
  • Страна: Польша
  • Доставка: от 990 ₽
  • Срок доставки: 12-20 дней
  • В наличии: 10
  • Оценка: 0
  • Отзывов: 0

Характеристики

Identyfikator produktu
12556522369

Stan
Nowy

Tytuł
Switch-Mode Power Supplies, Second Edition (2014)

Autor
Christophe P. Basso

Nośnik
ebook

Język publikacji
angielski

Format
epub

Wydawnictwo
McGraw-Hill

Описание

PRZEDMIOTEM OFERTY JEST KOD DOSTĘPOWY DO KSIĄŻKI ELEKTRONICZNEJ (EBOOK)

KSIĄŻKA JEST DOSTĘPNA NA ZEWNĘTRZNEJ PLATFORMIE. KSIĄŻKA NIE JEST W POSTACI PLIKU.

Switch-Mode Power Supplies, Second Edition (2014)

THE LATEST SPICE SIMULATION AND DESIGN TOOLS FOR CREATING STATE-OF-THE-ART SWITCHMODE POWER SUPPLIES Fully updated to incorporate new SPICE features and capabilities, this practical guide explains, step by step, how to simulate, test, and improve switch-mode power supply designs. Detailed formulas with founding equations are included. Based on the author's continued research and in-depth, handson work in the field, this revised resource offers a collection of the latest SPICE solutions to the most difficult problem facing power supply designers: creating smaller, more heat-efficient power supplies in shorter design cycles. NEW to this edition: Complete analysis of rms currents for the three basic cells in CCM and DCM PWM switch at work in the small-signal analysis of the DCM boost and the QR flyback OTA-based compensators Complete transistor-level TL431 model Small-signal analysis of the borderline-operated boost PFC circuit operated in voltage or current mode All-over power phenomena in QR or fixed-frequency discontinuous/continuous flyback converters Small-signal model of a QR flyback converter Small-signal model of the active clamp forward converter operated in voltagemode control Electronic contentdesign templates and examples available online Switch-Mode Power Supplies: SPICE Simulations and Practical Designs, Second Edition, covers: Small-signal modeling * Feedback and ciontrol loops * Basic blocks and generic switched models * Nonisolated converters * Off-line converters * Flyback converters * Forward converters * Power factor correction

  • Autorzy: Christophe P. Basso
  • Wydawnictwo: McGraw-Hill Professional
  • Data wydania: 2014
  • Wydanie: 2
  • Liczba stron:
  • Forma publikacji: ePub (online)
  • Język publikacji: angielski
  • ISBN: 9780071824736
  • Cover
  • Title
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • Nomenclature
  • Chapter 1. Introduction to Power Conversion
  • 1.1 “Do you really need to simulate?”
  • 1.2 What you will find in the following pages
  • 1.3 What you will not find in This book
  • 1.4 Converting power with resistors
  • 1.4.1 Associating Resistors
  • 1.4.2 A Closed-Loop System
  • 1.4.3 Deriving Useful Equations with the Linear Regulator
  • 1.4.4 A Practical Working Example
  • 1.4.5 Building a Simple Generic Linear Regulator
  • 1.4.6 Conclusion on Linear Regulators
  • 1.5 Converting power with switches
  • 1.5.1 A Filter Is Needed
  • 1.5.2 Current in the Inductance, Continuous or Discontinuous?
  • 1.5.3 Charge and Flux Balance
  • 1.5.4 Energy Storage
  • 1.6 The duty ratio factory
  • 1.6.1 Voltage-Mode Operation
  • 1.6.2 Current-Mode Operation
  • 1.7 The buck converter
  • 1.7.1 On-Time Event
  • 1.7.2 Off-Time Event
  • 1.7.3 Buck WaveformsCCM
  • 1.7.4 Buck WaveformsDCM
  • 1.7.5 Buck Transition Point DCM–CCM
  • 1.7.6 Buck CCM Output Ripple Voltage Calculation
  • 1.7.7 Now with the ESR
  • 1.7.8 Buck Ripple, the Numerical Application
  • 1.7.9 Rms Currents in the Buck Converter
  • 1.8 The boost converter
  • 1.8.1 On-Time Event
  • 1.8.2 Off-Time Event
  • 1.8.3 Boost WaveformsCCM
  • 1.8.4 Boost WaveformsDCM
  • 1.8.5 Boost Transition Point DCM–CCM
  • 1.8.6 Boost CCM Output Ripple Voltage Calculations
  • 1.8.7 Now with the ESR
  • 1.8.8 Boost Ripple, the Numerical Application
  • 1.8.9 Rms Currents in the Boost Converter
  • 1.9 The buck-Boost converter
  • 1.9.1 On-Time Event
  • 1.9.2 Off-Time Event
  • 1.9.3 Buck-Boost WaveformsCCM
  • 1.9.4 Buck-Boost WaveformsDCM
  • 1.9.5 Buck-Boost Transition Point DCM–CCM
  • 1.9.6 Buck-Boost CCM Output Ripple Voltage Calculation
  • 1.9.7 Now with the ESR
  • 1.9.8 Buck-Boost Ripple, the Numerical Application
  • 1.9.9 Rms Currents in the Buck-Boost Converter
  • 1.10 Input Filtering
  • 1.10.1 The RLC Filter
  • 1.10.2 A More Comprehensive Representation
  • 1.10.3 Creating a Simple Closed-Loop Current Source with SPICE
  • 1.10.4 Understanding Overlapping Impedances
  • 1.10.5 Damping the Filter
  • 1.10.6 Calculating the Required Attenuation
  • 1.10.7 Fundamental Frequency Evaluation
  • 1.10.8 Selecting the Right Cutoff Frequency
  • What I Should Retain from This Chapter
  • References
  • Appendix 1A An RLC Transfer Function
  • Appendix 1B The Capacitor Equivalent Model
  • Appendix 1C Power Supply Classification by Topologies
  • Appendix 1D Root Mean Square Values of CCM and DCM Switching Waveforms
  • Chapter 2. Small-Signal Modeling
  • 2.1 State-Space Averaging
  • 2.1.1 SSA at Work for the Buck ConverterFirst Step
  • 2.1.2 The DC Transformer
  • 2.1.3 Large-Signal Simulations
  • 2.1.4 SSA at Work for the Buck Converter, the LinearizationSecond Step
  • 2.1.5 SSA at Work for the Buck Converter, the Small-Signal ModelFinal Step
  • 2.2 The PWM Switch ModelThe Voltage-Mode Case
  • 2.2.1 Back to the Good Old Bipolars
  • 2.2.2 An Invariant Internal Architecture
  • 2.2.3 Waveform Averaging
  • 2.2.4 Terminal Currents
  • 2.2.5 Terminal Voltages
  • 2.2.6 A Transformer Representation
  • 2.2.7 Large-Signal Simulations
  • 2.2.8 A More Complex Representation
  • 2.2.9 A Small-Signal Model
  • 2.2.10 Helping with Simulation
  • 2.2.11 Discontinuous Mode Model
  • 2.2.12 Deriving the d2 Variable
  • 2.2.13 Clamping Sources
  • 2.2.14 Encapsulating the Model
  • 2.2.15 The PWM Modulator Gain
  • 2.2.16 Testing the Model
  • 2.2.17 Mode Transition
  • 2.3 The PWM Switch ModelThe Current-Mode Case
  • 2.3.1 Current-Mode Instabilities
  • 2.3.2 Preventing Instabilities
  • 2.3.3 The Current-Mode Model in CCM
  • 2.3.4 Upgrading the Model
  • 2.3.5 The Current-Mode Model in DCM
  • 2.3.6 Deriving the Duty Ratios d1 and d2
  • 2.3.7 Building the DCM Model
  • 2.3.8 Testing the Model
  • 2.3.9 Buck DCM, Instability in DC
  • 2.3.10 Checking the Model in CCM
  • 2.3.11 Building Duty Ratio Factories
  • 2.4 The PWM Switch ModelParasitic Elements Effects
  • 2.4.1 A Variable Resistor
  • 2.4.2 Ohmic Losses, Voltage Drops: The VM Case
  • 2.4.3 Ohmic Losses, Voltage Drops: The CM Case
  • 2.4.4 Testing the Lossy Model in Current Mode
  • 2.4.5 Convergence Issues with the CM Model
  • 2.5 PWM Switch Model in Borderline Conduction
  • 2.5.1 Borderline ConductionThe Voltage-Mode Case
  • 2.5.2 Testing the Voltage-Mode BCM Model
  • 2.5.3 Borderline ConductionThe Current-Mode Case
  • 2.5.4 Testing the Current-Mode BCM Model
  • 2.6 The PWM Switch ModelA Collection of Circuits
  • 2.6.1 The Buck
  • 2.6.2 The Tapped Buck
  • 2.6.3 The Forward
  • 2.6.4 The Buck-Boost
  • 2.6.5 The Flyback
  • 2.6.6 The Boost
  • 2.6.7 The Tapped Boost
  • 2.6.8 The Nonisolated SEPIC
  • 2.6.9 The Isolated SEPIC
  • 2.6.10 The Nonisolated Ćuk Converter
  • 2.6.11 The Isolated Ćuk Converter
  • 2.7 Other Averaged Models
  • 2.7.1 Ridley Models
  • 2.7.2 Small-Signal Current-Mode Models
  • 2.7.3 Ridley Models at Work
  • 2.7.4 CoPEC Models
  • 2.7.5 CoPEC Models at Work
  • 2.7.6 Ben-Yaakov Models
  • What I Should Retain from This Chapter
  • References
  • Appendix 2A Basic Transfer Functions for Converters
  • 2A.1 Buck
  • 2A.2 Boost
  • 2A.3 Buck-Boost
  • References
  • Appendix 2B Poles, Zeros, and Complex PlaneA Simple Introduction
  • References
  • Appendix 2C Small-Signal Analysis of the DCM Boost Converter in Voltage Mode
  • Chapter 3. Feedback and Control Loops
  • 3.1 Observation Points
  • 3.2 Stability Criteria
  • 3.3 Phase Margin and Transient Response
  • 3.4 Choosing the Crossover Frequency
  • 3.5 Shaping the Compensation Loop
  • 3.5.1 The Passive Pole
  • 3.5.2 The Passive Zero
  • 3.5.3 Right Half-Plane Zero
  • 3.5.4 Type 1 AmplifierActive Integrator
  • 3.5.5 Type 2 AmplifierZero-Pole Pair
  • 3.5.6 Type 2aOrigin Pole Plus a Zero
  • 3.5.7 Type 2bProportional Plus a Pole
  • 3.5.8 Type 3Origin Pole Plus Two Coincident Zero-Pole Pairs
  • 3.5.9 Selecting the Right Amplifier Type
  • 3.6 An Easy Stabilization ToolThe k Factor
  • 3.6.1 Type 1 Derivation
  • 3.6.2 Type 2 Derivation
  • 3.6.3 Type 3 Derivation
  • 3.6.4 Stabilizing a Voltage-Mode Buck Converter with the k Factor
  • 3.6.5 Conditional Stability
  • 3.6.6 Independent Pole-Zero Placement
  • 3.6.7 Crossing Over Right at the Selected Frequency
  • 3.6.8 The k Factor versus Manual Pole-Zero Placement
  • 3.6.9 Stabilizing a Current-Mode Buck Converter with the k Factor
  • 3.6.10 The Current-Mode Model and Transient Steps
  • 3.7 Feedback with the TL431
  • 3.7.1 A Type 2 Amplifier Design Example with the TL431
  • 3.7.2 A Type 3 Amplifier with the TL431
  • 3.7.3 Biasing the TL431
  • 3.7.4 The Resistive Divider
  • 3.8 The Optocoupler
  • 3.8.1 A Simplified Model
  • 3.8.2 Extracting the Pole
  • 3.8.3 Accounting for the Pole
  • 3.9 Operational Transconductance Amplifiers
  • 3.10 Shunt Regulators
  • 3.10.1 SPICE Model of the Shunt Regulator
  • 3.10.2 Quickly Stabilizing a Converter Using the Shunt Regulator
  • 3.11 Small-Signal Responses with Psim and Simplis
  • What I Should Retain from This Chapter
  • References
  • Appendix 3A Automated Pole-Zero Placement
  • Appendix 3B A TL431 Spice Model
  • 3B.1 A Behavioral TL431 Spice Model
  • 3B.2 Cathode Current versus Cathode Voltage
  • 3B.3 Output Impedance
  • 3B.4 Open-Loop Gain
  • 3B.5 Transient Test
  • 3B.6 Model Netlist
  • Appendix 3C Type 2 Manual Pole-Zero Placement
  • Appendix 3D Understanding the Virtual Ground in Closed-Loop Systems
  • 3D.1 Numerical Example
  • 3D.2 Loop Gain Is Unchanged
  • Chapter 4. Basic Blocks and Generic Switched Models
  • 4.1 Generic Models for Faster Simulations
  • 4.1.1 In-Line Equations
  • 4.2 Operational Amplifiers
  • 4.2.1 A More Realistic Model
  • 4.2.2 A UC384X Error Amplifier
  • 4.3 Sources with a Given Fan-Out
  • 4.4 Voltage-Adjustable Passive Elements
  • 4.4.1 The Resistor
  • 4.4.2 The Capacitor
  • 4.4.3 The Inductor
  • 4.5 A Hysteresis Switch
  • 4.6 An Undervoltage Lockout Block
  • 4.7 Leading Edge Blanking
  • 4.8 Comparator with Hysteresis
  • 4.9 Logic Gates
  • 4.10 Transformers
  • 4.10.1 A Simple Saturable Core Model
  • 4.10.2 Multioutput Transformers
  • 4.11 Astable Generator
  • 4.11.1 A Voltage-Controlled Oscillator
  • 4.11.2 A Voltage-Controlled Oscillator Featuring Dead Time Control
  • 4.12 Generic controllers
  • 4.12.1 Current-Mode Controllers
  • 4.12.2 Current-Mode Model with a Buck
  • 4.12.3 Current-Mode Instabilities
  • 4.12.4 The Voltage-Mode Model
  • 4.12.5 The Duty Ratio Generation
  • 4.12.6 A Quick Example with a Forward Converter
  • 4.13 Dead Time Generation
  • 4.14 Short-Pulse Generators
  • 4.15 List of Generic Models
  • 4.16 Convergence Options
  • What I Should Retain from This Chapter
  • References
  • Appendix 4A An Incomplete Review of the Terminology Used in Magnetic Designs
  • 4A.1 Introduction
  • 4A.2 Field Definition
  • 4A.3 Permeability
  • 4A.4 Founding Laws
  • 4A.5 Inductance
  • 4A.6 Avoiding Saturation
  • Further Reading
  • Appendix 4B Feeding Transformer Models with Physical Values
  • 4B.1 Understanding the Equivalent Inductor Model
  • 4B.2 Determining the Physical Values of the Two-Winding T Model
  • 4B.3 The Three-Winding T Model
  • References
  • Chapter 5. Simulations and Practical Designs of Nonisolated Converters
  • 5.1 The Buck Converter
  • 5.1.1 A 12-V, 4-A Voltage-Mode Buck from a 28-V Source
  • 5.1.2 The ac Analysis
  • 5.1.3 Transient Analysis
  • 5.1.4 The Power Switch
  • 5.1.5 The Diode
  • 5.1.6 Output Ripple and Transient Response
  • 5.1.7 Input Ripple
  • 5.1.8 A 5-V, 10-A Current-Mode Buck from a Car Battery
  • 5.1.9 The ac Analysis
  • 5.1.10 Transient Analysis
  • 5.1.11 A Synchronous Buck Converter
  • 5.1.12 A Low-Cost Floating Buck Converter
  • 5.1.13 Component Constraints for the CCM Buck Converter
  • 5.2 The Boost Converter
  • 5.2.1 A Voltage-Mode 48-V, 2-A Boost Converter from a Car Battery
  • 5.2.2 The ac Analysis
  • 5.2.3 Transient Analysis
  • 5.2.4 A Current-Mode 5-V, 1-A Boost Converter from a Li-Ion Battery
  • 5.2.5 The ac Analysis
  • 5.2.6 Transient Analysis
  • 5.2.7 Input Filter
  • 5.2.8 Component Constraints for the Boost Converter
  • 5.3 The Buck-Boost Converter
  • 5.3.1 A Voltage-Mode 12-V, 2-A Buck-Boost Converter Powered from a Car Battery
  • 5.3.2 The ac Analysis
  • 5.3.3 Transient Analysis
  • 5.3.4 A Discontinuous Current-Mode 12-V, 2-A Buck-Boost Converter Operating from a Car Battery
  • 5.3.5 Ac Analysis
  • 5.3.6 Transient Analysis
  • 5.3.7 Component Constraints for the Buck-Boost Converter
  • References
  • Appendix 5A The Boost in Discontinuous Mode, Design Equations
  • 5A.1 Input Current
  • 5A.2 Output Ripple Voltage
  • Chapter 6. Simulations and Practical Designs of Off-Line ConvertersThe Front End
  • 6.1 The Rectifier Bridge
  • 6.1.1 Capacitor Selection
  • 6.1.2 Diode Conduction Time
  • 6.1.3 Rms Current in the Capacitor
  • 6.1.4 Current in the Diodes
  • 6.1.5 Input Power Factor
  • 6.1.6 A 100-W Rectifier Operated on Universal Mains
  • 6.1.7 Hold-Up Time
  • 6.1.8 Waveforms and Line Impedance
  • 6.1.9 In-Rush Current
  • 6.1.10 Voltage Doubler
  • 6.2 Power Factor Correction
  • 6.2.1 Definition of Power Factor
  • 6.2.2 Nonsinusoidal Signals
  • 6.2.3 A Link to the Distortion
  • 6.2.4 Why Power Factor Correction?
  • 6.2.5 Harmonic Limits
  • 6.2.6 A Need for Storage
  • 6.2.7 Passive PFC
  • 6.2.8 Improving the Harmonic Content
  • 6.2.9 The Valley-Fill Passive Corrector
  • 6.2.10 Active Power Factor Correction
  • 6.2.11 Different Techniques
  • 6.2.12 Constant On-Time Borderline Operation
  • 6.2.13 Frequency Variations in BCM
  • 6.2.14 Averaged Modeling of the BCM Boost
  • 6.2.15 Fixed-Frequency Average Current-Mode Control
  • 6.2.16 Shaping the Current
  • 6.2.17 Fixed-Frequency Peak Current-Mode Control
  • 6.2.18 Compensating the Peak Current-Mode Control PFC
  • 6.2.19 Average Modeling of the Peak Current-Mode PFC
  • 6.2.20 Hysteretic Power Factor Correction
  • 6.2.21 Fixed-Frequency DCM Boost
  • 6.2.22 Flyback Converter
  • 6.2.23 Testing the Flyback PFC
  • 6.3 Designing A Bcm Boost Pfc
  • 6.3.1 Average Simulations
  • 6.3.2 Reducing the Simulation Time
  • 6.3.3 Cycle-by-Cycle Simulation
  • 6.3.4 The Follow-Boost Technique
  • What I Should Retain from This Chapter
  • References
  • Appendix 6A Diode and Bulk Capacitor Current Constraints: A Different View
  • 6A.1 Design Example
  • 6A.2 Selecting a Normalized Value for the Bulk Capacitor
  • Appendix 6B A Small-Signal Model of the BCM Boost Converter Power Factor Corrector Operated in Voltage- or Current-Mode Control
  • 6B.1 Current-Mode Control
  • References
  • Chapter 7. Simulations and Practical Designs of Flyback Converters
  • 7.1 An Isolated Buck-Boost
  • 7.2 Flyback Waveforms, No Parasitic Elements
  • 7.3 Flyback Waveforms with Parasitic Elements
  • 7.4 Flyback Converter Operated in Quasi-Resonance
  • 7.4.1 Deriving the Switching Frequency
  • 7.5 Observing the Drain Signal, No Clamping Action
  • 7.6 Clamping the Drain Excursion
  • 7.7 Dcm, Looking for Valleys
  • 7.8 Designing the Clamping Network
  • 7.8.1 The RCD Configuration
  • 7.8.2 Selecting kc
  • 7.8.3 Curing the Leakage Ringing
  • 7.8.4 Which Diode to Select?
  • 7.8.5 Beware of Voltage Variations
  • 7.8.6 TVS Clamp
  • 7.9 Two-Switch Flyback
  • 7.10 Active Clamp
  • 7.10.1 Design Example
  • 7.10.2 Simulation Circuit
  • 7.11 Small-Signal Response of the Flyback Topology
  • 7.11.1 DCM Voltage Mode
  • 7.11.2 CCM Voltage Mode
  • 7.11.3 DCM Current Mode
  • 7.11.4 CCM Current Mode
  • 7.12 Practical Considerations about the Flyback
  • 7.12.1 Controller Start-Up
  • 7.12.2 Start-Up Resistor Design Example
  • 7.12.3 Half-Wave Connection
  • 7.12.4 Good Riddance, Start-Up Resistor!
  • 7.12.5 High-Voltage Current Source
  • 7.12.6 The Auxiliary Winding
  • 7.12.7 Short-Circuit Protection
  • 7.12.8 Observing the Feedback Pin
  • 7.12.9 Sensing the Secondary-Side Current
  • 7.12.10 Improving the Drive Capability
  • 7.12.11 Overvoltage Protection
  • 7.13 Compensating Over Power
  • 7.13.1 Transferring Power with a Flyback Converter
  • 7.13.2 The Propagation Delay Affects the Maximum Output Power Level
  • 7.13.3 Why Limit Maximum Power?
  • 7.13.4 How Do We Practically Limit the Maximum Power?
  • 7.13.5 The Transition from CCM to DCM
  • 7.13.6 Deriving Variables
  • 7.13.7 Computing the Transmitted Power
  • 7.13.8 Over Power Protection in CCM
  • 7.13.9 Over Power Protection with a QR Flyback Converter
  • 7.13.10 Reducing the Maximum Current at High Line
  • 7.13.11 Calculating an OPP Resistance
  • 7.14 Standby Power of Converters
  • 7.14.1 What Is Standby Power?
  • 7.14.2 The Origins of Losses
  • 7.14.3 Skipping Unwanted Cycles
  • 7.14.4 Skipping Cycles with a UC384X
  • 7.14.5 Frequency Foldback
  • 7.15 A 20 W, Single-Output Power Supply
  • 7.16 A 90 W, Single-Output Power Supply
  • 7.17 A 35 W, Multioutput Power Supply
  • 7.18 Component Constraints for the Flyback Converter
  • What I Should Retain from This Chapter
  • References
  • Appendix 7A Reading the Waveforms to Extract the Transformer Parameters
  • Appendix 7B The Stress
  • 7B.1 Voltage
  • 7B.2 Current
  • Appendix 7C Transformer Design for the 90-W Adapter
  • 7C.1 Core Selection
  • 7C.2 Determining the Primary and Secondary Turns
  • 7C.3 choosing the Primary and Secondary Wire Sizes
  • 7C.4 Choosing the Material, Based on the Desired Inductance, or Gapping the Core If Necessary
  • 7C.5 Designs Using Intusoft Magnetic Designer
  • Reference
  • Appendix 7D A Small-Signal Model of the Flyback Converter Operated in Quasi-Resonance
  • 7D.1 A BCM Flyback Converter
  • 7D.2 Application Example
  • 7D.3 The Ac Analysis
  • 7D.4 Numerical Application
  • Reference
  • Appendix 7E Switching Losses with a nonlinearly Varying Parasitic Capacitor
  • Reference
  • Appendix 7F Testing Transformer Core Saturation Level
  • Reference
  • Chapter 8. Simulations and Practical Designs of Forward Converters
  • 8.1 An Isolated Buck Converter
  • 8.1.1 Need for a Complete Core Reset
  • 8.2 Reset Solution 1, a Third Winding
  • 8.2.1 Leakage Inductance and Overlap
  • 8.3 Reset Solution 2, a Two-Switch Configuration
  • 8.3.1 Two-Switch Forward and Half-Bridge Driver
  • 8.4 Reset Solution 3, the Resonant Demagnetization
  • 8.5 Reset Solution 4, the RCD Clamp
  • 8.6 Reset Solution 5, the Active Clamp
  • 8.6.1 Average Simulations of the Active Clamp Forward Converter
  • 8.6.2 Ac Response of the Active Clamp Forward through Cycle-by-Cycle Simulation
  • 8.7 Synchronous Rectification
  • 8.8 Multioutput Forward Converters
  • 8.8.1 Magnetic Amplifiers
  • 8.8.2 Synchronous Postregulation
  • 8.8.3 Coupled Inductors
  • 8.9 Small-Signal Response of the Forward Converter
  • 8.9.1 Voltage Mode
  • 8.9.2 Current Mode
  • 8.9.3 Multioutput Forward
  • 8.10 A Single-Output 12-V, 250-W Forward Design Example
  • 8.10.1 MOSFET Selection
  • 8.10.2 Installing a Snubber
  • 8.10.3 Diode Selection
  • 8.10.4 Small-Signal Analysis
  • 8.10.5 Transient Results
  • 8.10.6 Short-Circuit Protection
  • 8.11 Component Constraints for the Forward Converter
  • What I Should Retain from This chapter
  • References
  • Appendix 8A Half-Bridge Drivers Using the Bootstrap Technique
  • Appendix 8B Impedance Reflections
  • Appendix 8C Transformer and Inductor Designs for the 250-W Adapter
  • 8C.1 Transformer Variables
  • 8C.2 Transformer Core Selection
  • 8C.3 Determining the Primary and Secondary Turns
  • 8C.4 Choosing the Primary and Secondary Wire Sizes
  • 8C.5 Gapping the Core
  • 8C.6 Designs Using Intusoft Magnetic Designer
  • 8C.7 Inductor Design
  • 8C.8 Core Selection
  • 8C.9 Choosing the Wire Size and Checking the dc Resistive Loss
  • 8C.10 Checking the Core Loss
  • 8C.11 Estimating the Temperature Rise
  • Reference
  • Appendix 8D A Small-Signal Model for the Active Clamp Forward Converter Operated in Voltage Mode Control
  • 8D.1 Revealing PWM Switches
  • 8D.2 Large-Signal Simulations
  • 8D.3 Small-Signal Modeling
  • 8D.4 The Magnetizing Current Resonant Circuit
  • 8D.5 Final Lap: Associating All the Blocks
  • 8D.6 Testing a Prototype Response in the Bench
  • Reference
  • Appendix 8E Web Content
  • Conclusion
  • Index

W tej ofercie kupujesz kod dostępowy umożliwiający dostęp do wskazanej treści. Kod umożliwia dostęp do treści za pomocą przeglądarki WWW, dedykowanej aplikacji iOS (Apple) ze sklepu App Store lub dedykowanej aplikacji Android ze sklepu Play. Kod oraz instrukcje otrzymasz pocztą elektroniczną niezwłocznie po zaksięgowaniu płatności. Brak możliwości pobrania pliku.

Na podstawie art. 38 pkt 13 Ustawy z dnia 30 maja 2014 roku o prawach konsumenta realizując kod dostępowy rezygnujesz z prawa do odstąpienia od umowy zawartej na odległość.

Typ licencji: licencja wieczysta.

BRAK MOŻLIWOŚCI POBRANIA PLIKU.

NIE PRZESYŁAMY PLIKÓW E-MAILEM.




Приобрести Импульсные источники питания, второе издание (2014 г.) по привлекательной цене с гарантированной доставкой из Польши по всей России, вы можете на сайте Boxcentr.ru
Загрузка...
Загрузка...
Информация о технических характеристиках, комплекте поставки, стране изготовления и внешнем виде товара носит справочный характер.
Стоимость доставки приблизительная. Точная стоимость доставки указывается после обработки заказа менеджером.
Выберите каталог