Генетика рака и геномика для персонализированной медицины
- Артикул:
- 12502310520
- Страна: Польша
- Доставка: от 990 ₽
- Срок доставки: 12-20 дней
- В наличии: 10
- Оценка: 0
- Отзывов: 0
Характеристики
- Identyfikator produktu
- 12502310520
- Stan
- Nowy
- Tytuł
- Cancer Genetics and Genomics for Personalized Medicine
- Autor
- Il-Jin Kim
- Nośnik
- ebook
- Język publikacji
- angielski
- Format
- epub
- Wydawnictwo
- CRC Press
Описание
PRZEDMIOTEM OFERTY JEST KOD DOSTĘPOWY DO KSIĄŻKI ELEKTRONICZNEJ (EBOOK)
KSIĄŻKA JEST DOSTĘPNA NA ZEWNĘTRZNEJ PLATFORMIE. KSIĄŻKA NIE JEST W POSTACI PLIKU.
This book covers almost all fields of cancer genetics and genomics for personalized medicine. Targeted therapy, or precision medicine, or personalized medicine is becoming a standard treatment for many diseases, including cancer. However, how much do we know about the personalized medicine approach? This lucid book helps undergraduate and graduate students, professional researchers, and clinicians to better understand the key concept of personalized medicine. The most up-to-date topics on personalized medicine in this book cover the recent trends in and updates on lung, gastric, liver, breast, and other types of cancers. Circulating tumor cell, cell-free circulating DNA, and microRNAs are discussed as new diagnostic and prognostic markers for cancer. The avatar mouse model is also discussed for maximizing treatment efficacy and prognosis prediction, and so is microenvironment as a drug resistance mechanism. With classical and new pathological approaches, the book provides a systemic overview of personalized immunotherapies and hyperthermic intraperitoneal chemotherapy, followed by new emerging fields of hereditary cancer, thereby equipping readers to eventually contribute in developing more advanced tools and therapies for curing cancer.
- Autorzy: Author
- Wydawnictwo: CRC Press
- Data wydania: 2017
- Wydanie: 1
- Liczba stron:
- Forma publikacji: ePub (online)
- Język publikacji: angielski
- ISBN: 9781315341101
- Cover
- Half Title
- Title Page
- Copyright Page
- Table of Contents
- Preface
- 1 Personalized Medicine for Cancer: Introduction and Overview of the Book
- 1.1 Changing the Treatment Paradigm for Cancer
- 1.2 Companion Diagnostics and New Sequencing Technologies
- 1.3 Early Detection of Cancer and Tumor Recurrence Monitoring: Circulating Tumor Cell (CTC) and Circulating Tumor DNA (ctDNA)
- 1.4 Cancer Animal (Mouse) Models and Microenvironment for Personalized Medicine
- 1.5 Personalized Immunotherapy
- 1.6 Hereditary Cancer Syndromes and Potential Treatment
- 1.7 Future Directions
- 2 Personalized Medicine in Lung Cancer
- 2.1 Introduction
- 2.1.1 Predictive Models
- 2.1.2 The Molecular Diagnostics Approach
- 2.1.3 Conventional Chemotherapy
- 2.1.3.1 Cisplatin
- 2.1.3.2 Pemetrexed
- 2.1.3.3 Gemcitabine
- 2.1.3.4 Taxanes
- 2.2 Genetic Alterations and New Potential Targets
- 2.2.1 Receptor Tyrosine Kinases
- 2.2.1.1 EGFR inhibitors (first and second generation)
- 2.2.1.2 ALK rearrangement (first and second generation)
- 2.2.1.3 ROS1
- 2.2.2 Epigenetic Factors
- 2.2.3 Transcription Factors
- 2.2.4 Repurposing Drugs
- 2.3 Conclusions
- 3 Genome-Based Personalized Medicine in Liver Cancer
- 3.1 Introduction
- 3.1.1 Epidemiology of Liver Cancer
- 3.1.2 Clinical Characteristics of Liver Cancer
- 3.2 Why Personalized Medicine is Important in Patients with Liver Cancer?
- 3.3 Methods and Results of Genomic Profiling of Liver Cancer
- 3.3.1 Comparative Genomic Hybridization (CGH)
- 3.3.2 Microarray-Based Technology
- 3.3.3 Next-Generation Sequencing
- 3.3.4 Integromics: Integration of Multiple -omic Data
- 3.4 Conclusion
- 4 Applications of Circulating DNA Analysis in Personalized Medicine
- 4.1 Biological Characteristics of Circulating DNA
- 4.1.1 History
- 4.1.2 Biological Characteristics
- 4.2 Molecular Methods for Circulating DNA Analysis
- 4.3 Circulating Tumor-Specific DNA in Cancer Patients
- 4.3.1 Monitoring of Tumor Burden and Disease Response
- 4.3.2 Molecular Stratification for Targeted Therapies
- 4.3.3 Analysis of Clonal Evolution and Therapeutic Resistance
- 4.4 Circulating DNA for Noninvasive Prenatal Diagnostics
- 4.4.1 Noninvasive Diagnosis of Fetal Genetic Diseases
- 4.4.2 Noninvasive Prenatal Diagnosis of Down-Syndrome
- 4.4.3 Noninvasive Sequencing of the Fetal Genome
- 4.4.4 Clinical Implementation of Prenatal Diagnosis
- 4.5 Circulating DNA in Transplant Recipients
- 4.6 Pre-analytical Considerations
- 4.7 Conclusion
- 5 Circulating Tumor Cells and Personalized Medicine
- 5.1 Metastasis and Circulating Tumor Cells
- 5.1.1 The Metastatic Process
- 5.1.2 Circulating Tumor Cells
- 5.2 Enrichment and Detection of CTCs
- 5.2.1 Enrichment
- 5.2.2 Detection
- 5.2.2.1 Immuno-cytomorphological approach: Immunocytochemistry (ICC)
- 5.2.2.2 Molecular approach: Real-time reverse transcription polymerase chain reaction (RT-PCR)
- 5.3 Clinical Implications of CTC Detection and Enumeration
- 5.3.1 Breast Cancer
- 5.3.2 Prostate Cancer
- 5.3.3 Colorectal Cancer
- 5.3.4 Lung Cancer
- 5.4 Molecular Characterization of CTC and Personalized Medicine
- 5.4.1 Tumor Biomarkers in CTCs
- 5.4.2 Molecular Analysis of CTCs
- 5.4.3 Clinical Trials for Personalized Medicine
- 5.5 Summary
- 6 Mouse Models in Personalized Cancer Medicine
- 6.1 Transgenic Mouse Models: From Understanding the Molecular Basis of Tumorigenesis to the Refinement of Drug Design Targeting Specific Mutated/Altered Proteins
- 6.1.1 Prenatal GEMMs
- 6.1.1.1 Tissue-specific promoters and CRE recombinase technology
- 6.1.2 Postnatal GEMMS
- 6.1.2.1 Irreversible models: Inducible CRE recombination
- 6.1.2.2 Switchable models: The tetracycline inducible system
- 6.1.2.3 The estrogen-receptor system
- 6.1.3 GEMMs: Benefits and Drawbacks
- 6.2 Patient-Derived Xenograft (PDX): Tumor Heterogeneity and the Exploration of Avatars as Predictors of Treatment Outcome
- 6.2.1 Starting Material
- 6.2.2 Mode of Implantation
- 6.2.3 Recipient Mouse Strains
- 6.2.4 PDXs in Personalized Medicine
- 6.2.5 PDXs: Limitations and Value
- 6.3 Humanized Mouse Models: Bringing the Major Players Back into the Biological Game
- 6.3.1 The Need for Better Models
- 6.3.2 “Humanizing” the Mouse Models
- 6.3.3 Transplantation of Hematopoietic Stem Cells
- 6.3.4 Transplantation of Peripheral Blood Mononuclear Cells
- 6.3.5 Local “Humanization”
- 6.3.6 Overcoming Limitations of the Model
- 6.3.7 Success Stories
- 6.3.8 Humanized Mouse Models: Future Perspectives
- 6.4 Discussion and Perspectives
- 7 Tumor Microenvironment, Therapeutic Resistance, and Personalized Medicine
- 7.1 TME Orchestrates Disease Progression and Dominates Therapeutic Response
- 7.1.1 Cancer-Associated Fibroblasts
- 7.1.2 Vasculature System
- 7.1.3 Extracellular Matrix
- 7.1.4 Immune Cells
- 7.1.5 TME-Derived Exosomes
- 7.2 Treatment-Activated TME Confers Acquired Resistance and Creates Barriers to a Clinical Cure
- 7.2.1 Damage Responses of the TME Offset Therapy-Enforced Tumor Regression
- 7.2.2 Modified Differentiation and Immune Responses in the TME Decrease Therapeutic Outcomes
- 7.3 Overcoming Challenges of Personalized Cancer Therapy Requires Translation of Biological Insights into the Clinic
- 7.3.1 Implications of Personalized Cancer Therapy in an Era of Precision Medicine
- 7.3.2 Significance of Preclinical Studies in Promoting PCT Advancement
- 7.4 Concluding Remarks and Future Outlooks
- 8 Personalized Immune Therapy
- 8.1 Immunotherapy
- 8.2 Immune Cell Involvement during Carcinogenesis
- 8.3 Context-Specific Nature of Immune Cells within Tumors
- 8.4 Types of Immunotherapeutic Approaches
- 8.4.1 Biological Response Modifiers
- 8.4.2 Monoclonal Antibodies
- 8.4.3 Tumor Vaccines
- 8.4.4 Cellular Immunotherapy
- 8.4.4.1 Dendritic cell-based immunotherapy
- 8.4.4.2 Adoptive genetically modified and/or expanded T-cell therapy
- 8.4.4.3 Adoptive natural killer (T) cells’ transfer
- 8.5 The Future of Personalized Medicine
- 9 Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for Peritoneal Malignancies
- 9.1 What Is Hyperthermic Intraperitoneal Chemotherapy (HIPEC)?
- 9.2 The Role of Heat as a Cytotoxic Agent
- 9.3 The Role of Heat Shock Proteins in HIPEC Treatment
- 9.4 Chemotherapeutic Agents Used for HIPEC
- 9.4.1 Cisplatin: [cis-diamminedichloroplatinum(II) (CDDP)] (Platinol and Platinol-AQ)
- 9.4.2 Doxorubicin: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5, 12-dione)
- 9.4.3 Carboplatin: (cis-diammine-1, 1-cyclobutane dicarboxylate platinum II, CBDCA, JM8)
- 9.4.4 Melphalan: 4-[bis(chloroethyl)amino] phenylalanine]
- 9.5 Quality-of-Life Impact of HIPEC Treatment
- 9.6 The Future of HIPEC: The Need for Personalization
- 10 Personalized Medicine in Hereditary Cancer Syndromes
- 10.1 Introduction
- 10.2 Neurofibromatosis Type 1
- 10.3 Neurofibromatosis Type 2
- 10.4 Gorlin Syndrome
- 10.5 Hereditary Breast and Ovarian Cancer Syndrome
- 10.6 Lynch Syndrome
- 10.7 Familial Adenomatous Polyposis
- 10.8 Fanconi Anemia
- 10.9 Inherited Medullary Thyroid Cancer
- 10.10 Tuberous Sclerosis Complex (TSC)
- 10.11 RASopathies
- 10.12 Von Hippel–Lindau Disease
- 10.12.1 Tyrosine Kinase Inhibitors (TKIs)
- 10.12.2 mTOR Inhibitors
- 10.12.3 Anti-VEGF Receptor Antibodies
- 10.12.4 Other Agents Including Histone Deacetylases (HDAC) Inhibitor
- 10.13 Cowden Syndrome
- 10.14 Proteus and Proteus-Like Syndrome
- 10.15 Li–Fraumeni Syndrome
- 10.16 Conclusions
- 11 Pathology in the Era of Personalized Medicine
- 11.1 Why Is the Role of Pathologists in Personalized Medicine Important?
- 11.2 Practical Guidance for Molecular Pathology
- 11.2.1 Preanalytic
- 11.2.2 Analytic
- 11.2.3 Quality Assurance
- 11.2.4 Postanalytic
- 11.3 Next-Generation Sequencing and the Pathologist
- 11.4 Conclusions
- 12 MicroRNAs in Human Cancers
- 12.1 Introduction
- 12.2 Biogenesis and Working Mechanism of MicroRNA
- 12.3 MicroRNAs as Tumor Suppressors
- 12.4 MiRNAs as Oncogenes
- 12.5 MiRNAs and Epigenetics
- 12.6 MiRNA Signatures in Human Cancers
- 12.7 Biomarker MiRNAs in Human Cancers
- 12.8 Circulating MiRNAs as Biomarkers of Human Cancers
- 12.9 Single Polymorphism (SNP) in MiRNAs
- 12.10 MiRNA and Cancer Stem Cells
- 12.11 Perspectives
- 13 Pharmacogenomics of Tamoxifen
- 13.1 What Is Tamoxifen?
- 13.2 Why Is Pharmacogenomics of Tamoxifen Important?
- 13.2.1 Metabolic Pathway of Tamoxifen
- 13.2.2 CYP2D6 Genotype and Pharmacokinetics of Tamoxifen
- 13.2.3 CYP2D6 Genotype and Tamoxifen Efficacy
- 13.3 The Controversy in Tamoxifen-CYP2D6 Study
- 13.4 Future Direction of Tamoxifen Pharmacogenomics
- 13.4.1 Pharmacogenomics for Irinotecan: UGT1A1
- 13.4.2 Pharmacogenetic Test of CYP2C9 and VKORC1 Genotypes for Warfarin Treatment
- Index
W tej ofercie kupujesz kod dostępowy umożliwiający dostęp do wskazanej treści. Kod umożliwia dostęp do treści za pomocą przeglądarki WWW, dedykowanej aplikacji iOS (Apple) ze sklepu App Store lub dedykowanej aplikacji Android ze sklepu Play. Kod oraz instrukcje otrzymasz pocztą elektroniczną niezwłocznie po zaksięgowaniu płatności. Brak możliwości pobrania pliku.
Na podstawie art. 38 pkt 13 Ustawy z dnia 30 maja 2014 roku o prawach konsumenta realizując kod dostępowy rezygnujesz z prawa do odstąpienia od umowy zawartej na odległość.
Typ licencji: licencja wieczysta.
BRAK MOŻLIWOŚCI POBRANIA PLIKU.
NIE PRZESYŁAMY PLIKÓW E-MAILEM.
Стоимость доставки приблизительная. Точная стоимость доставки указывается после обработки заказа менеджером.